Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.686
Filtrar
1.
Neuropharmacology ; 254: 109972, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710443

RESUMO

Opioid use disorder (OUD) is a chronic condition associated with long-lasting molecular and behavioral changes. Animals with prolonged access to opioids develop behaviors similar to human OUD. Identifying associated molecular changes can provide insight to underpinnings that lead to or maintain OUD. In pilot studies, we identified several miRNA targets that are altered by the administration of oxycodone. We selected mir182 for follow up as it was recently shown to be dysregulated in plasma of men administered oxycodone. In addition, mir182 is increased in reward-related brain regions of male rats following exposure to various addictive substances. The present study utilizes a long-access oxycodone self-administration paradigm to examine changes in mir182 and its mRNA targets associated with neuroplasticity, which may be involved in the maintenance of OUD-like phenotype in rats. Male rats were trained to self-administer oxycodone (0.1 mg/kg/infusion, i. v.) for 6 h daily sessions for 12 days. Each animal had a yoked saline control that received matched saline infusions. Animals were then tested on a progressive ratio schedule to measure motivation to obtain a single infusion of oxycodone. Drug seeking was measured following 28 days of forced abstinence using a 90-min cued/test. RTqPCR was utilized to measure mir182 and mRNA targets related to neuroplasticity (wnt3, plppr4, pou3f3, tle4, cacna2d, and bdnf) from the nucleus accumbens. Data revealed that animals responded on a continuum for oxycodone. When divided into two groups termed high- and low responders, animals diverged during self-administration acquisition and maintained differences in behavior and gene expression throughout the study. mir182 was upregulated in the nucleus accumbens of both high and low responders and negatively correlated with tle4, which showed a strong negative correlation with reinstatement behavior. mRNA target levels were correlated with behaviors associated with increased severity of OUD behavior in male rats.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38743111

RESUMO

RATIONALE: People with tobacco addiction have deficits in cognition, in particular deficits in attention. It is not clear however, whether deficits are a cause or a consequence, or both, of chronic nicotine use. Here we set out a series of experiments in rats to address this question and, more specifically, to assess the effects of exposure to and withdrawal from chronic nicotine self-administration on attentional performance. METHODS: Animals were trained in a 5-choice serial reaction time task to probe individual attentional performance and, then, were given access to a fixed versus increasing dose of intravenous nicotine for self-administration, a differential dose procedure known to induce two between-session patterns of nicotine intake: a stable versus escalation pattern. Attentional performance was measured daily before, during and also 24-h after chronic access to the differential dose procedure of nicotine self-administration. CONCLUSIONS: We found that pre-existing individual variation in attentional performance predicts individual vulnerability to develop escalation of nicotine intake. Moreover, while chronic nicotine self-administration increases attention, withdrawal from nicotine intake escalation induces attentional deficits, a withdrawal effect that is dose-dependently reversed by acute nicotine. Together, these results suggest that pre-existing individual variation in attentional performance predicts individual vulnerability to develop escalation of nicotine intake, and that part of the motivation for using nicotine during escalation might be to alleviate withdrawal-induced attentional deficits.

3.
Addict Biol ; 29(5): e13403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735880

RESUMO

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Assuntos
Analgésicos Opioides , Fentanila , Camundongos Endogâmicos C57BL , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Camundongos , Fentanila/farmacologia , Masculino , Feminino , Analgésicos Opioides/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Autoadministração , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética
4.
Addict Biol ; 29(5): e13397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711205

RESUMO

Neuronal ensembles in the medial prefrontal cortex mediate cocaine self-administration via projections to the nucleus accumbens. We have recently shown that neuronal ensembles in the prelimbic cortex form rapidly to mediate cocaine self-administration. However, the role of neuronal ensembles within the nucleus accumbens in initial cocaine-seeking behaviour remains unknown. Here, we sought to expand the current literature by testing the necessity of the cocaine self-administration ensemble in the nucleus accumbens core (NAcCore) 1 day after male and female rats acquire cocaine self-administration by using the Daun02 inactivation procedure. We found that disrupting the NAcCore ensembles after a no-cocaine reward-seeking test increased subsequent cocaine seeking, while disrupting NAcCore ensembles following a cocaine self-administration session decreased subsequent cocaine seeking. We then characterized neuronal cell type in the NAcCore using RNAscope in situ hybridization. In the no-cocaine session, we saw reduced dopamine D1 type neuronal activation, while in the cocaine self-administration session, we found preferential dopamine D1 type neuronal activity in the NAcCore.


Assuntos
Cocaína , Comportamento de Procura de Droga , Neurônios , Núcleo Accumbens , Autoadministração , Animais , Núcleo Accumbens/efeitos dos fármacos , Cocaína/farmacologia , Masculino , Feminino , Ratos , Comportamento de Procura de Droga/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Recompensa , Inibidores da Captação de Dopamina/farmacologia , Reforço Psicológico , Receptores de Dopamina D1 , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Ratos Sprague-Dawley , Córtex Pré-Frontal/efeitos dos fármacos
5.
Clin Obes ; : e12672, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714352

RESUMO

Drug therapy in patients who have undergone bariatric surgery is challenging. We aimed to investigate the patients' perspective on their drug therapy. This should allow deriving tailored measures to better support patients and their healthcare professionals with drug therapy after bariatric surgery. We conducted a quantitative telephone-based interview study with patients who have undergone bariatric surgery. The interview consisted of assessments in three parts: (i) current drug therapy: prescription, administration and adherence, (ii) changes after bariatric surgery and (iii) adverse events. (i) The 105 enrolled patients were taking a median of 10 (range: 3-30) drugs. In 1017 of 1080 drugs (94%), expectations in drug effectiveness were (rather) met. Of the 105 patients, 27% reported difficulties in drug administration, 44% forgot to take their drugs at least one time and 20% reported deviations from the prescription. (ii) Sixteen percent of the patients observed changes in drug effectiveness or tolerability-additionally to therapy adjustment by physicians. (iii) Seventy-four percent recognised at least one adverse event right before and/or after bariatric surgery, most frequently in gastrointestinal disorders. Patients who have undergone bariatric surgery have to deal with many difficulties in drug handling and adverse events. Our study emphasises the need for better and more individual support for patients with their drug therapy after bariatric surgery and, therefore, suggests a multidisciplinary approach that includes pharmacists. The stronger involvement of the patients' perspective seems to be a valuable source in research and practice.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38702472

RESUMO

RATIONALE: Methamphetamine addiction is a persistent and intractable pathological learning and memory, whereas no approved therapeutics is available. However, few attentions have been paid to how associative learning participates in the formation of intractable memory related to drug addiction OBJECTIVES AND METHODS: To investigate the role of associative learning in methamphetamine addiction and the underlying neurobiological mechanism, methamphetamine self-administration, oral sucrose self-administration, chemogenetic neuromanipulation, and fiber photometry in mice were performed in this study. RESULTS: We reported that associative learning increased methamphetamine-induced self-administration, but not oral sucrose self-administration. In addition, the enhancement of methamphetamine-induced self-administration was independent of more methamphetamine consumption, and remained with higher drug-taking and motivation in the absence of visual cues, suggesting the direct effects of the associative learning that enhanced methamphetamine-induced self-administration. Moreover, chemogenetic inactivation of the secondary visual cortex (V2) reduced the enhancement of the drug-taking induced by associative learning but did not alter sucrose-taking. Further fiber photometry of V2 neurons demonstrated that methamphetamine-associative learning elicits V2 neuron excitation, and sucrose-associative learning elicits V2 neuron inhibition. CONCLUSIONS: Therefore, this study reveals the neurobiological mechanism of V2 excitability underlying how associative learning participates in the formation of intractable memory related to drug addiction, and gives evidence to support V2 as a promising target for stimulation therapy for methamphetamine addiction.

7.
Drug Alcohol Depend ; 258: 111282, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593731

RESUMO

The adulteration of illicit fentanyl with the alpha-2 agonist xylazine has been designated an emerging public health threat. The clinical rationale for combining fentanyl with xylazine is currently unclear, and the inability to study fentanyl/xylazine interactions in humans warrants the need for preclinical research. We studied fentanyl and xylazine pharmacodynamic and pharmacokinetic interactions in male and female rats using drug self-administration behavioral economic methods. Fentanyl, but not xylazine, functioned as a reinforcer under both fixed-ratio and progressive-ratio drug self-administration procedures. Xylazine combined with fentanyl at three fixed dose-proportion mixtures did not significantly alter fentanyl reinforcement as measured using behavioral economic analyses. Xylazine produced a proportion-dependent decrease in the behavioral economic Q0 endpoint compared to fentanyl alone. However, xylazine did not significantly alter fentanyl self-administration at FR1. Fentanyl and xylazine co-administration did not result in changes to pharmacokinetic endpoints. The present results demonstrate that xylazine does not enhance the addictive effects of fentanyl or alter fentanyl plasma concentrations. The premise for why illicitly manufacture fentanyl has been adulterated with xylazine remains to be determined.


Assuntos
Fentanila , Reforço Psicológico , Autoadministração , Xilazina , Fentanila/farmacologia , Animais , Xilazina/farmacologia , Ratos , Masculino , Feminino , Economia Comportamental , Ratos Sprague-Dawley , Esquema de Reforço , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Analgésicos Opioides , Condicionamento Operante/efeitos dos fármacos
8.
Drug Alcohol Depend ; 258: 111280, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614019

RESUMO

The most prevalent psychoactive chemical in tobacco smoke is nicotine, which has been shown to maintain tobacco consumption as well as cause acute adverse effects at high doses, like nausea and emesis. Recent studies in laboratory animals have suggested that many non-nicotine constituents of tobacco smoke (e.g., minor tobacco alkaloids) may also contribute to tobacco's overall reinforcing and adverse effects. Here, we used intravenous (IV) self-administration (n = 3) and observation (n = 4) procedures in squirrel monkeys to, respectively, compare the reinforcing and adverse observable effects of nicotine and three prominent minor tobacco alkaloids, nornicotine, anatabine, and myosmine. In self-administration studies, male squirrel monkeys were trained to respond under a second-order fixed-interval schedule of reinforcement and dose-effects functions for nicotine and each of the minor tobacco alkaloids nornicotine, anatabine, and mysomine were determined. Observation studies were conducted in a different group of male squirrel monkeys to quantify the ability of nicotine, nornicotine, anatabine, and mysomine to produce adverse overt effects, including hypersalivation, emesis, and tremors. Results show that nicotine and to a lesser extent nornicotine were readily self-administered, whereas anatabine and myosmine were not. In observation studies, all minor tobacco alkaloids produced adverse observable effects that were either comparable or more pronounced than nicotine. Collectively, the present results showing that nicotine and the minor tobacco alkaloids nornicotine, anatabine, and myosmine produce differential reinforcing and acute adverse observable effects in monkeys provides further evidence that these constituents may differently contribute to the psychopharmacological and adverse effects of tobacco consumption.


Assuntos
Alcaloides , Nicotiana , Nicotina , Reforço Psicológico , Saimiri , Autoadministração , Animais , Masculino , Relação Dose-Resposta a Droga , Condicionamento Operante/efeitos dos fármacos
9.
MethodsX ; 12: 102675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585181

RESUMO

Intravenous self-administration in rats is used widely to study the reinforcing effects of drugs and serves as the gold standard for assessing their use and misuse potential. One challenge that researchers often encounter when scaling up experiments is balancing the cost, time investment to construct, and robustness of each implanted catheter. These catheters include multiple components such as surgical meshing and a variety of entry ports designed to facilitate the connection of the rat to a catheter port tethering system. Other considerations include maintaining the catheters free of blockage during the extent of the drug self-administration experiment. These large-scale studies provide ample opportunity for the catheter system to fail. The failure and replacement of commercially purchased catheters leads to ballooning expenses, and the failure of in-lab manufactured catheters requires the manufacture of reserves, also increasing costs, as these handmade products are inherently more variable. We have developed a catheter system that combines a commercially available implantable back-mounted entry connector system with inexpensive medical items such as surgical mesh, sutures, and an air-tight back flow prevention system to bolster the overall success of self-administration experiments.•Method to bolster commercially available jugular catheter components for long-lasting self-administration experiments.•Reduces the overall cost per unit of self-administration experiments.•Easily assembled by laboratory students and staff.

10.
Biochem Pharmacol ; : 116189, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580165

RESUMO

Previous research has demonstrated therapeutic potential for VMAT2 inhibitors in rat models of methamphetamine use disorder. Here, we report on the neurochemical and behavioral effects of 1-(2-methoxyphenethyl)-4-phenethypiperazine (JPC-141), a novel analog of lobelane. JPC-141 potently inhibited (Ki = 52 nM) [3H]dopamine uptake by VMAT2 in striatal vesicles with 50 to 250-fold greater selectivity for VMAT2 over dopamine, norepinephrine and serotonin plasmalemma transporters. Also, JPC-141 was 57-fold more selective for inhibiting VMAT2 over [3H]dofetilide binding to hERG channels expressed by HEK293, suggesting relatively low potential for cardiotoxicity. When administered in vivo to rats, JPC-141 prevented the METH-induced reduction in striatal dopamine content when given either prior to or after a high dose of METH, suggesting a reduction in METH-induced dopaminergic neurotoxicity. In behavioral assays, JPC-141 decreased METH-stimulated locomotor activity in METH-sensitized rats at doses of JPC-141 which did not alter locomotor activity in the saline control group. Moreover, JPC-141 specifically decreased iv METH self-administration at doses that had no effect on food-maintained responding. These findings support the further development of VMAT2 inhibitors as pharmacotherapies for individuals with methamphetamine use disorder.

11.
Neuropharmacology ; 253: 109959, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38648925

RESUMO

Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.

12.
Neuropharmacology ; 252: 109947, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631564

RESUMO

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.


Assuntos
Heroína , Sesquiterpenos Policíclicos , Autoadministração , Animais , Masculino , Heroína/administração & dosagem , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/administração & dosagem , Feminino , Camundongos , Ratos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Sesquiterpenos/farmacologia , Sesquiterpenos/administração & dosagem , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Reforço Psicológico , Recompensa , Camundongos Transgênicos , Nociceptividade/efeitos dos fármacos , Camundongos Endogâmicos C57BL
13.
Pharmacol Biochem Behav ; 240: 173776, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679080

RESUMO

Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.

14.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613458

RESUMO

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Nicotina/farmacologia , Ibogaína/farmacologia , Camundongos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Autoadministração , Xenopus laevis , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Relação Dose-Resposta a Droga , Atividade Motora/efeitos dos fármacos
15.
Physiol Behav ; 281: 114565, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663460

RESUMO

Nicotine use disorder (NUD) remains a leading cause of preventable death in the U.S. Unfortunately, current FDA-approved pharmacotherapies for smoking cessation have limited efficacy and are associated with high rates of relapse. One major barrier to long-term smoking abstinence is body weight gain during withdrawal. Nicotine withdrawal-induced body weight gain can also lead to development of chronic disease states like obesity and type II diabetes mellitus. Therefore, it is critical to identify novel pharmacotherapies for NUD that decrease relapse and nicotine withdrawal symptoms including body weight gain. Recent studies demonstrate that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary nicotine taking and seeking and prevent withdrawal-induced hyperphagia and body weight gain. Emerging evidence also suggests that GLP-1R agonists improve cognitive deficits, as well as depressive- and anxiety-like behaviors, which contribute to smoking relapse during withdrawal. While further studies are necessary to fully characterize the effects of GLP-1R agonists on NUD and understand the mechanisms by which GLP-1R agonists decrease nicotine withdrawal-mediated behaviors, the current literature supports GLP-1R-based approaches to treating NUD.

16.
Sci Rep ; 14(1): 6509, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499566

RESUMO

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Assuntos
Cocaína , Receptores Opioides kappa , Ratos , Animais , Receptores Opioides kappa/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Motivação , Dopamina/farmacologia , Ratos Sprague-Dawley , Fenmetrazina/farmacologia , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Autoadministração
17.
Nicotine Tob Res ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513068

RESUMO

INTRODUCTION: Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Previous studies showed that cotinine supported self-administration in rats and rats with a history of cotinine self-administration exhibited relapse-like drug-seeking behavior, suggesting that cotinine may also be reinforcing. To date, whether cotinine may contribute to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1/2 enzymes in rats and methoxsalen is a potent CYP2B1/2 inhibitor. METHODS: The study examined nicotine metabolism, self-administration, and locomotor activity. The hypothesis is that methoxsalen inhibits nicotine self-administration and cotinine replacement attenuates the inhibitory effects of methoxsalen in male rats. RESULTS: Methoxsalen decreased plasma cotinine levels following a subcutaneous nicotine injection. Repeated daily methoxsalen treatments reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, lower nicotine intake, and lower plasma cotinine levels. However, methoxsalen did not alter the maintenance of nicotine self-administration despite a significant reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. CONCLUSIONS: These results indicate that methoxsalen inhibition of cotinine formation impaired the acquisition of nicotine self-administration, and cotinine replacement attenuated the inhibitory effects of methoxsalen on the acquisition of self-administration, suggesting that cotinine may contribute to the initial development of nicotine reinforcement. IMPLICATIONS: Smoking cessation medications targeting nicotine's effects are only moderately effective, making it imperative to better understand the mechanisms of nicotine misuse. Methoxsalen inhibited nicotine metabolism to cotinine and impaired the acquisition of nicotine self-administration. Cotinine replacement restored plasma cotinine and attenuated the methoxsalen inhibition of nicotine self-administration in rats. These results suggest that (1) the inhibition of nicotine metabolism may be a viable strategy in reducing the development of nicotine reinforcement, (2) methoxsalen may be translationally valuable, and (3) cotinine may be a potential pharmacological target for therapeutic development given its important role in the initial development of nicotine reinforcement.

18.
Brain Sci ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38539646

RESUMO

Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague Dawley rats were provided 90 min or 12 h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12 h access to methamphetamine and those that had 90 min or 12 h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal monoamine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).

19.
Neurotoxicol Teratol ; 102: 107341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490565

RESUMO

Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Feminino , Masculino , Animais , Gravidez , Corticosterona , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Etanol/farmacologia , Sacarose
20.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 903-917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472151

RESUMO

BACKGROUND: Ethanol self-administration is governed by appetitive and consummatory behaviors. The sipper model procedurally separates these behaviors by training rats to meet a response requirement within 20 min to obtain continuous access to a sipper tube for an additional 20 min. Variations of this paradigm have been developed to quantify appetitive strength by evaluating lever presses during an extinction probe trial (EPT) or by deriving a break point (BP) from a progressive ratio (PR) schedule of reinforcement. However, no study has assessed the relationship between these tasks, within subjects, in both sexes. METHODS: Male and female rats (n = 16) were trained to meet a response requirement of 20 to access a slightly sweetened ethanol solution (10% ethanol + 1% sucrose). Two EPTs, during which no operant behavior was reinforced, were interleaved between 18 reinforced sessions. Next, rats completed an across-session PR schedule, where the response requirement increased each session. BP was defined as the highest completed response requirement. We then replicated the methodology in the same subjects responding for a 3% sucrose solution. Finally, the experiment was replicated in a separate cohort of rats (n = 24) trained to a response requirement of 4 to earn access to the ethanol solution and paradigm order (EPT vs. PR) was counterbalanced. RESULTS: We report strong, positive correlations between average EPT lever presses and BP across all experiments. No sex differences were observed in appetitive behaviors. However, the two cohorts revealed mixed results when assessing sex differences in consummatory measures. CONCLUSIONS: This study further validates the EPT as a measure of motivation and suggests that similar levels of motivation exist to procure alcohol in males and females. The findings complement the literature showing that appetitive and consummatory processes are distinct and thus should be independently assessed in self-administration paradigms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...